CDM An Integral Component of Air Traffic Management

Integrated CNS
Conference and Workshop
28 April 2004

Sensis Corporation 5793 Widewaters Parkway DeWitt, New York 13214

Tel: +1 315-445-0550 www.sensis.com Fax: +1 315-445-9401 info@sensis.com

Agenda

- Setting the Scene
- What is CDM
- The Role of Technology
- Case Study
- Advancing the Case Study
- **The Business Case**

- Statistical Evidence Indicates that Passenger Traffic and Demand Are on the Rise, Returning to pre-September 11 levels
 - US Airlines Are Reporting Increases in Delays (January 2004); According to DOT:
 - On-time Arrival Rate was 74.9%, down from 76% in December
 - Airlines canceled 3% of flights compared with 2.1% in December
 - ATC System delays affected 9.24% of flights compared with 9.13% in December
 - Risk that Summer 2004 will resemble Summer 2000
 - Load Factors

- Network Carriers/Legacy Airlines Continuing to Lose Billions of Dollars Annually
 - Revenue Per Available Seat Mile (RASM) continues to fall faster that Cost Per Seat Mile (CASM); Revenues mirror levels from the early 1990s, while capital costs have doubled for many airlines
 - Rising fuel prices
 - Security requirements
 - Increased passenger demands
 - Strained labor/management relations
 - Executive leadership changes

- Fierce Competition Between Network and Low-Cost Carriers (LCCs)
 - Significant Passenger Share at Large Hub Airports

 Chicago Midway 	86%
 Baltimore 	52.2 %
 New York Kennedy 	45.9%
• Las Vegas	42.2%
• San Jose	42 %
• San Diego	39.6 %
• Ft. Lauderdale	39.5 %
• Phoenix	37.9%
• Tampa	34.5%
• Orlando	34.1%

- JetBlue's Performance Underscores Differences in KPIs Between LCCs and Legacy Carriers
 - March 2004: RPMs 38.6% higher than March 2003; 36% increase in capacity
 - YTD 2004: 42% increase in RPMs; 44.6% increase in capacity; 79.9% load factor
 - Fleet Growth: 57 A320s, with 12 to be delivered this year; 100 Embraer 190s on order

- Increased Competition Among Airports
 - Passenger Traffic is Soaring at Mid-tier Airports Where LCCs Are a Formidable Presence
- Airports Are Evolving Into a Key Bottleneck in the ATM Network
 - All Flights Start and End at an Airport
 - Relatively Minimal Industry Investment in Traffic Flow Improvements on the Surface, Relative to Investments In Enroute Initiatives (CDM)

- Aviation Industry Players Compete and Cooperate In Manner Which is Unusual in Commercial World
 - Fierce Competition in the Marketplace
 - Marketing; Fill the Seats
 - Frequent Flyer Rewards
 - Extraordinary Cooperation and Camaraderie at an Operational Level
 - On the Field and In the Air
 - Alliances
 - Legislative Issues

Current Situation Demands Improvements...

What Is CDM?

- Information Exchange
- Buzzword
- Compromise
- Culture
- Philosophy
- Policy
- Program
- Process
- A Beginning
- An End
- A Means to an End

Definition of CDM

- According to Webster, a Philosophy is a System of Principles for Guidance in Practical Affairs
- CDM is a Philosophy that Should Be Applied with an Acceptance and Understanding That No Two Airports or Airport Stakeholder Teams Function in Exactly the Same Manner
 - Interoperability is key
 - Broad, transparent communication is essential
 - Continuous measurement and management of the system is pivotal to stakeholder adoption of philosophy
 - Tangible, positive impact for All participants

Once you've seen one airport, you've seen one airport

Goals of CDM

- Provide the Right Information to the Right People, At the Right Time
 - High quality
 - Rapid update
- Facilitate Common Situational Awareness That Enables Users to Optimize a Situation in Accordance With a Defined Plan (gate occupancy, arrival sequence, departure sequence, pushback sequence, de-icing activities)
 - Understand the situation
 - Real-time
 - Historical
 - Leverage available resources
- Provide the Capability to Measure Performance
- Maximize Use of Available Capacity Within Identified Constraints

Effective Application of CDM Philosophy

- Global Airline Alliances
 - More than marketing agreements
- European Airport Initiatives
 - Athens
 - Barcelona
 - Brussels
 - Lisbon
 - London Heathrow
 - Milan
 - Stockholm
- Passenger Bill of Rights
 - Compensation policies
 - US Enroute airspace initiatives
- Security

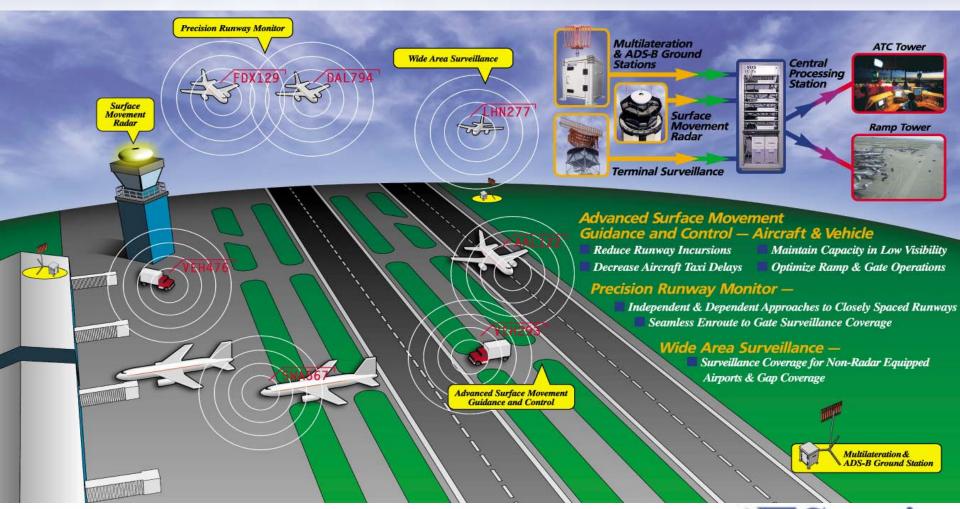
Facilitating CDM -- A Way Forward

- Gains Are Possible Via Non-Automated Means; Risk that Adoption Will Be Slow and Limited in Scope; Reduced Chance of Success
 - Timeliness
 - Error-prone
 - Elapsed time before benefits are achieved
 - Cost
- Application and Integration of Proven Technology is Key to Success
 - Rapid data update rate
 - Data consistency
 - Intuitive
 - Robust

The Role of Technology

Surveillance Technologies

- Near Global Acceptance of the Value of High Quality, High Update Rate Surface Surveillance Data
 - Aircraft and vehicle identification and position
- Airports and Air Navigation Service Providers Worldwide Have Endorsed the Proven <u>Safety Benefits</u> of Surveillance Technology
 - European A-SMGCS
 - US ASDE-X
- In Addition to the Safety Benefits, Opportunities to Dramatically Improve Airside Efficiency and Capacity
 - Fresh "set of eyes"



Surveillance Technologies Core Building Block for CDM

- Source of High Quality Aircraft and Vehicle Position Data for Decision Support Tools
- Tools Derive Objective, Comprehensive Information About Airside Operations
 - Information processing and operations modeling
 - Opportunity to reduce taxi time, improve punctuality, match capacity to demand, optimize the use of available resources and infrastructure, reduce the impact of irregular operations, and improve predictability of operations
- Technologies exist today to achieve networked CDM and quantifiable operational benefits

Surveillance Technologies Core Building Block for CDM

Case Study

Background

Team

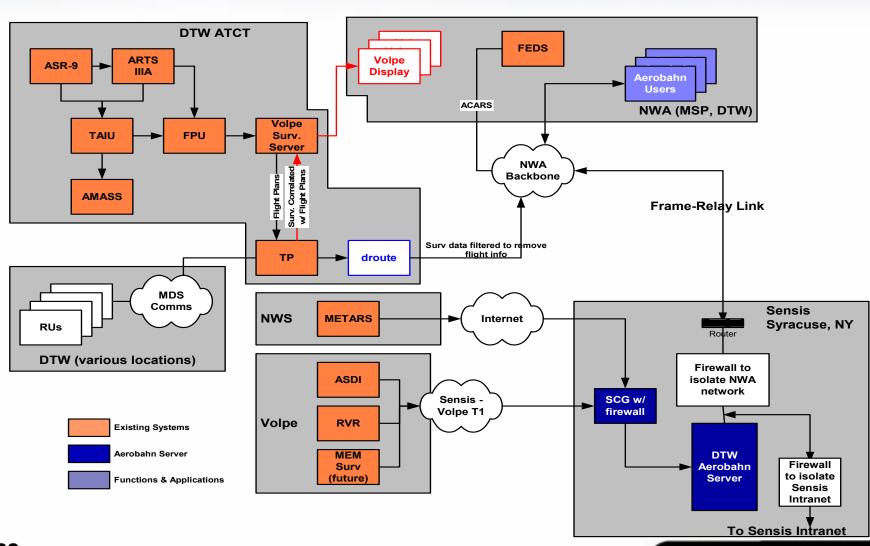
- Comprised of Industry/Government Partners
- FAA, NASA, Northwest Airlines (NWA), Sensis, Volpe TSC

Goal

 Evaluate the Impact of Surveillance Data on the Management of Airside Operations at a Busy Airport

Original Scope

- Detroit Metropolitan Wayne County Airport (DTW)
- Users in NWA Ramp Tower and Local Control Center
- Prototype Decision Support Tool
- Beta Version of Surveillance Technology
- 12 month Evaluation


Background

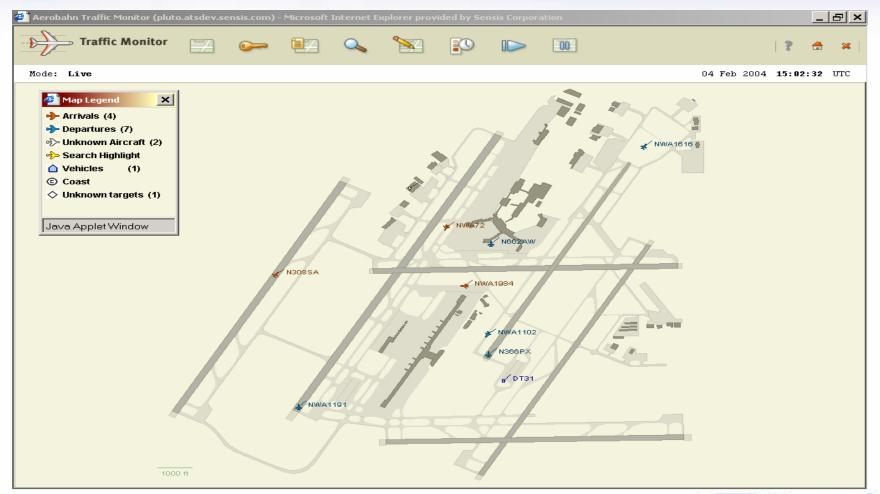
Solution Description

- Web-based Decision Support Tools Available to Users for Tactical Management of Surface Traffic and Post Analysis of Operational Events
- Surveillance Technology Consisted of 9 Remote Units (RUs) and a Single Reference Transponder
 - 3 Receive/Transmit
 - 6 Receive Only

Solution Configuration

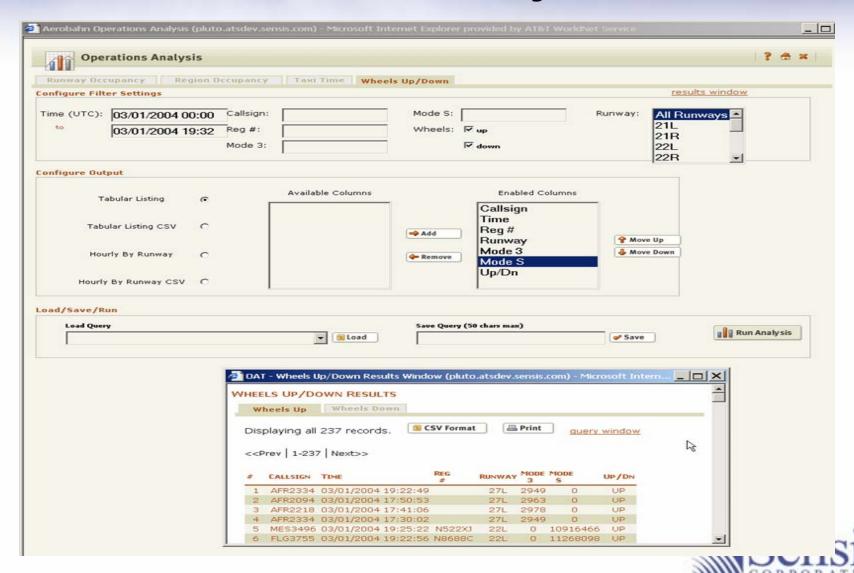
Key Features of Architecture

Software


- Proven, High Performance Database
 - Dynamic Development of Reports and Queries
 - Shared File System Reduces Risk of Data Loss
- Secure
 - Data Encryption For Inter-organizational Data Sharing
 - Multiple Levels of "User"
- Flexible, Browser-Based User Interface

Hardware

- Scaleable & Configurable
- PC-based
- Dell Servers
- Easily Upgradeable
- Interface to Third Party Systems



Tactical Management of Surface Traffic

Post Event Analysis

Users' Response to Solution

- Integral Part of Measurement and Management of NWA's DTW Airside Operation
- Increase In Number of Users
- Broader Application of Solution to Resolve Real World Challenges
 - System Operations Center (SOC)
 - Performance Monitoring and Measurement
- Prototype Decommissioned, Commercial Products Installed

"Value of the solution is enormous..."

"The system is essential to our operation...

Results

- Metrics Working Group Estimates
 - More Efficient Movement In Ramp Area
 - Estimate 2464 Hours of Taxi Savings Per Year (~ \$4.5M/yr)
 - More Efficient Handling of Irregular Operations
 - SOC Decisions Based on Monitoring of DTW Surface Traffic Avoided 20-24 Cancellations During One Winter Storm
 - Fewer Voice Calls Between Ramp, SOC, Pilots & ATC
 - 27% Reduction In Ramp Pilot Communication Time
 - 75% Reduction In SOC Ramp Calls To Locate "Missing" A/C

Demonstrated Results

- Reduced taxi in & taxi out times
 - Awareness of precise location of inbounds influences pushback clearance
 - Tactical management of pushback and traffic flow into and out of ramp reduces delays
 - Unimpeded taxi in/out of ramp area
- Reduced Routine communications, and time spent assembling information required to make a decision
 - Shared situational awareness enables stakeholders to make decisions sans a phone call
 - Crew scheduling
 - Ground operations
 - Passenger Customer Service
 - Emergency teams' response time

Demonstrated Results

- Improved ability to measure and manage the operation via objective, quantifiable data
 - Highly accurate taxi in and taxi out times
 - Time from ATC handoff to takeoff
 - Time elapsed waiting to cross active runway
 - Measure time flight under ATC control versus airline or airport
 - Measure occupancy times (runways, taxiways, gates, deicing pads, spots)
- Storage of Real-time Surface Situation Data Enables After-Action Reviews and Data Mining To Identify Systemic Problems, Make Operational Changes and Measure the Impact of the Changes
- Create training programs (what to do and what not to do) using actual scenarios

Advancing the Case Study to the Next Level

Networked CDM...The Next Step

- The Right Technical Components Are Available today to Create Robust, Flexible Solutions that Complement a Variety of Airport Operations and Associated Stakeholders
- To Achieve Optimum Levels of Safe, Efficient ATM, <u>ALL</u> Industry Stakeholders Must Demonstrate a Commitment to Connect the Nodes Throughout the Network *for the Benefit of the Overall Network*
 - Airlines
 - Standalone
 - Global Alliances
 - Air Navigation Service Providers (ANSPs)
 - FAA ATC SCC
 - FAA Enroute Centers
 - European Central Flow Management Unit (CFMU)

Networked CDM...The Next Step

- Global Industry, Capitalize on Advantages of a Harmonized Approach to Management of Airport Airside Operations
- Leverage Technologies to Expedite Adoption and Implementation of Common Policies and Procedures
 - EUROCONTROL CDM Levels
 - Level 1: Basic Airport CDM; Airport Turn-round Process-Milestones Approach
 - Level 2: Variable Taxi time Calculation
 - Level 3: Collaborative Pre-departure Sequence

Networked CDM...The Next Step

- Operational Benefits to All Stakeholders
 - Share Costs as well as Benefits
 - Provide Visibility Among Business Partners
 - Distribute Relevant Information to those Impacted by Decisions
 - Airport Operators
 - Passengers

Networked CDM...Extension of Case Study

- Expand Users at DTW
 - Wayne County
 - Ground Handlers
- Expand capabilities at AMS
 - Situational awareness of DTW operations
 - Situational awareness of CDG operations
- Expand Capabilities in MSP
 - Situational awareness of AMS operations
 - Situational awareness of all domestic hub airport locations
- Install Capabilities at FAA ATC SCC
- Forward Turnaround Activity Information to European CFMU

Networked CDM...Extension of Case Study

- Install Capabilities at FAA Enroute Centers
 - Increased situational awareness enables Centers to see the actual operation as events transpire, with no need for phone calls
 - Adjust departure restrictions such as miles-in-trail by adjusting restrictions based upon real demand versus anticipated demand
 - Runway, taxiway, and spot queue information
 - Metrics collection
 - Taxi out time (pushback to wheels up)
 - Departure taxi times exceeding 40 minutes
 - Time aircraft moves off the spot
 - Aircraft approaching/in ATC delays
 - Average minutes of delay per delayed flight
 - Region occupancy times
 - Trend analysis
 - Participate in flow management discussions with airline SOCs and FAA ATC SCC

The Business Case

